Experiments on Hypothesis "Fuzzy K-Means is Better than K-Means for Clustering"
نویسندگان
چکیده
منابع مشابه
Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملFuzzy K-means clustering with missing values
Fuzzy K-means clustering algorithm is a popular approach for exploring the structure of a set of patterns, especially when the clusters are overlapping or fuzzy. However, the fuzzy K-means clustering algorithm cannot be applied when the real-life data contain missing values. In many cases, the number of patterns with missing values is so large that if these patterns are removed, then sufficient...
متن کاملAgglomerative Fuzzy K-Means Clustering Algorithm
Introduction CLUSTERING is a process of grouping a set of objects into clusters so that the objects in the same cluster have high similarity but are very dissimilar with objects in other clusters. The K-Means algorithm is well known for its efficiency in clustering large data sets. Fuzzy versions of the K-Means algorithm have been reported by Ruspini and Bezdek, where each pattern is allowed to...
متن کاملRobust and Sparse Fuzzy K-Means Clustering
The partition-based clustering algorithms, like KMeans and fuzzy K-Means, are most widely and successfully used in data mining in the past decades. In this paper, we present a robust and sparse fuzzy K-Means clustering algorithm, an extension to the standard fuzzy K-Means algorithm by incorporating a robust function, rather than the square data fitting term, to handle outliers. More importantly...
متن کاملpersistent k-means: stable data clustering algorithm based on k-means algorithm
identifying clusters or clustering is an important aspect of data analysis. it is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. it is a main task of exploratory data mining, and a common technique for statistical data analysis this paper proposed an improved version of k-means algorithm, namely persistent k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Data Mining & Knowledge Management Process
سال: 2014
ISSN: 2231-007X,2230-9608
DOI: 10.5121/ijdkp.2014.4502